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Electrons in a standing electromagnetic wave—an optical lattice—tend to oscillate due to the quiver and
ponderomotive potentials. For sufficiently intense laser fields �I�2�5�1017 W cm−2 �m2� and in plasmas
with sufficiently low electron densities �n�1018 cm−3�, these oscillations can occur faster than the plasma can
respond. This paper shows that these oscillations result in Thomson scattering of light at both the laser and
ponderomotive bounce frequencies and their harmonics as well as at mixtures of these frequencies. We term
this mixing ponderomotive intermodulation. Here, the case of counterpropagating laser beams creating a
one-dimensional �1D� optical lattice is analyzed. The near-equilibrium electron orbits and subsequent Thomson
scattering patterns are computed in the single-particle limit. Scaling laws are derived to quantify the range of
validity of this approach. Finally, collective plasma and laser focusing effects are included by using particle-
in-cell �PIC� techniques. This effect resulting in light-frequency conversion has applications both as an infrared
light source and as a means to diagnose high laser intensities inside dense plasmas.
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I. INTRODUCTION

The interaction of beating electromagnetic waves within
plasma has been of interest for some time, with Rosenbluth
and Liu having discussed copropagating lasers in plasma as
early as 1972 �1�. Recently, the idea of overlapped laser
pulses has received much attention and has been suggested
for several applications. Such waves are created in many of
the proposed laser accelerators such as the colliding beam
accelerator �2–6� as well as in Raman amplification �7–10�,
optical traps �11�, plasma gratings �12�, and internal confine-
ment fusion Hohlraums �13�. Laser pulses also overlap in
high-density proton acceleration experiments when light is
reflected from the critical surface �14�.

Owing to their wide applicability, infrared light sources
have also garnered much attention recently. Free electron
lasers, fast diodes, thermal sources, and even tabletop laser
sources have been both proposed and demonstrated as infra-
red generators �15–21�. Such sources have been proposed for
use to image proteins, water, and even metals contained
within substrate materials through direct imaging as well as
pump probe experiments �22�.

Generation of an ultrafast infrared light burst is a chal-
lenging problem. In this article, we demonstrate theoretically
that by employing an optical lattice generated by the beat
pattern of two interfering laser beams, electrons Thomson
scatter the laser light into longer wavelengths. The wave-
length generated is tunable with the laser intensity, I. For the
case of counter propagating laser pulses, the emitted fre-
quency is proportional to I1/2. Moreover, this light is emitted

along the laser polarization direction and is, therefore, inher-
ently separated from the bright laser source, eliminating the
problem of filtering out the laser wavelength without simul-
taneously removing the desired wavelength.

In this paper, we take up the topic of equal frequency and
amplitude colliding laser beams and the light scattered by a
test electron within these fields. This is the same laser geom-
etry employed in the classic Kaptiza-Dirac problem, in
which energetic electrons are directed across the standing
light wave and subsequently diffracted �23,24�. In this study,
however, we consider low-energy electrons trapped in the
laser fields’ ponderomotive potential wells. In both cases, the
lasers set up a one-dimensional �1D� standing optical lattice
with a high potential near the magnetic-field nodes and a low
potential near the electric-field nodes. Low-energy electrons
tend to bunch in the low-energy region, oscillating about the
minimum with a period �z. The individual electron dynamics
in such a system are, of course, then dominated by both the
laser period, �0, and the ponderomotive bounce period, �z,
and as will be shown later, �0��z��p=2�	p

−1 for plasma
densities less than 1019 cm−3. This implies that these elec-
trons respond on a time scale faster than the plasma and such
single-particle effects can exist independent of the plasma.
This approach illustrates a phenomenon that we have termed
ponderomotive intermodulation—that is, intermodulation of
the laser and ponderomotive oscillation frequencies through
the optical lattice, manifested in the Thomson-scattered ra-
diation patterns.

We begin in the first three sections by analytically calcu-
lating the electron orbits near the magnetic- and electric-field
nodes, as these are equilibria. Using these results, the subse-
quently Thomson-scattered light is then computed as both a
function of frequency and direction of observation analyti-
cally and numerically by utilizing the Larmor formula and
applying Parseval’s theorem, following the model used pre-
viously for both Thomson �25,26� and Compton �27–33�
scattering. These results are then extended to an arbitrary
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initial electron phase, and simple scaling laws are derived to
bound the range of validity of this single-particle approach.
Plasma and more realistic laser fields are then added using
particle-in-cell �PIC� simulation techniques. Good agreement
is, indeed, found for electron densities as high as 1019 cm−3

and for 1-�m-wavelength laser pulses as short as 300 fs fo-
cused to 12 �m as predicted by the derived scalings. This
paper then concludes by illustrating the experimentally sig-
nificant consequences of this phenomenon, including the tun-
able infrared light, anomalous spectral broadening, a laser-
intensity diagnostic, and tunable line emission.

II. ELECTRON DYNAMICS

The simplest model of a plasma neglects all collective and
edge effects. Thus, to begin this study, the laser fields are
modeled as monochromatic plane waves propagating in the
±ẑ direction such that E= x̂2a0 cos�z�cos�t� and B
= ŷ2a0 sin�z�sin�t�. Throughout this paper, the axial displace-
ment z is normalized by the laser wave number k=	0 /c and
time t and frequency by the laser angular frequency 	0. Also,
the laser field strength E0 has been scaled to the normalized
vector potential a0=eE0 /m0	0c= �0.85�10−9��I�, where e

0 is the unit charge, m0 is the electron rest mass, c is the
speed of light, I is the focused laser intensity in W cm−2, and
� is the laser wavelength in �m. The equation of motion for

a test electron within these fields F=q�E+�� �B� can then be
written and rearranged to yield

��x = − 2a0 cos�z�sin�t�, ��y = 0, �1�

�
d

dt
�

dz

dt
= 2a0

2 sin�2z�sin2�t� , �2�

where zero initial velocity has already been imposed since
this is a Thomson-scattering model, � j is the velocity in the
jth direction normalized to c, and � is the relativistic Lorentz
factor.

The far-field Thomson-scattered radiation follows directly
from the electron orbits defined by these equations through
the Lienard-Wiechert potentials as

d2


d�d	
= 
0�n̂ � �n̂ � F�	���2, �3�

where 
 is the radiated energy in ergs, 
0=e2 /4�2c, n̂ is the
unit direction of observation, d� is a unit solid angle, and d	
is a unit frequency �34�. The radiated energy is normalized to

0 throughout 
̄=
 /
0. The dimensionless amplitude func-
tion is, in turn, given by

F�	� = 	�
−�

�

�� �t�exp�i	�t − n̂ · x�t��	dt . �4�

When � is truly periodic with period � and net displacement
per period x0 this integral can be shown to give an infinite
series of harmonics

F�	� = 		1�
0

�

�� �t�exp�i	�t − n̂ · x�t��	dt

� 

m=−�

�

��	 − m	1� , �5�

where 	1 is the base frequency given by 2� / ��− n̂ ·x0�. For
a0�0.2, the regime studied in this paper, 	1=	=2� /�
�26,35�.

To understand the conversion of laser energy to Thomson-
scattered light, the orbits must be computed for all initial
conditions, and these velocities Fourier-transformed in the
detector-retarded time as shown earlier. Unfortunately, this is
a complicated set of coupled, nonlinear equations, which are
difficult to solve, in general, even numerically �14,36�. For
low- to moderate, intensity lasers—e.g., I�5
�1017 W cm−2 for �=800 nm—a test electron quivers
within the lattice due to the sinusoidal ponderomotive poten-
tial given by

�p = a0
2 cos2�z� �6�

in units of electron rest-mass energy. This implies two equi-
libria, one unstable at the nodes of the magnetic field �z
=n�� and the other stable at the electric-field nodes �z
= �2n+1�� /2�.

III. MAGNETIC-FIELD-NODE EQUILIBRIUM

The nodes of the magnetic-field wave occur at z̄N=N� for
integer N. The electron motion here is purely along the laser
polarization �x̂� and is known exactly for arbitrary a0

�x�t� =
− 2a0 cos�z̄N�sin�t�
�1 + 4a0

2 sin2�t�
. �7�

This velocity corresponds to the special case of counter-
propagating lasers recently calculated by Salamin et al. �33�,
which can be integrated directly to determine x�t�

x�t� = arcsin�2a0 cos�t�
�1 + 4a0

2 � − arcsin� 2a0

�1 + 4a0
2� . �8�

For a0�0.5, this can be expanded and rearranged to yield

�x�t� = − 2a0 cos�z̄N� 

p=1

p odd

�

cp sin�pt� , �9�

where cp are known expansion coefficients, the first few of
which are given in Table I. Since the oscillation period is the
laser period and no net displacement occurs, the radiation
pattern consists of only laser harmonics. In fact, the radiation
energy per unit solid angle emitted normal to x̂ is known
exactly

d
̄

d�
�n̂ · x̂ = 0� = 


m=1

m odd

�

4�2a0
2m2cm

2 , �10�

where m denotes the harmonic number. Of course, since a0 is
small, only the first few harmonics are significant. The angu-
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lar distribution of this light can also be well approximated
for the first two laser harmonics as

d
̄

d�
��,	0� = 4�2a0

2c1
2�1 − �2� , �11�

d
̄

d�
��,2	0� = 64�2a0

4�c1 + c3�2�2�1 − �2� , �12�

where �= n̂ · x̂. Notice the characteristic Thomson-scattering
lobed structure in the angular distribution of these harmonics
and the azimuthal symmetry built in by the inherent rota-
tional invariance about x̂ of the coordinate system.

As a0 becomes large, the velocity approximates a square
wave, �x�t�=−cos�zN� for t��0,�� and cos�zN� for t��� ,2��.
This high field orbit also results in a spectrum of laser har-
monics with the higher orders becoming increasingly promi-
nent as a0 approaches infinity. This limiting spectrum �a0

→�� is given by

d
̄

d�
= 


m=−�

�


 8

�+�−
− � cos�m�−��

1

4
�−

+
cos�m�+��

1

4
�+ ��

�13�

where �±=1± n̂ ·x. The characteristic structure present in the
low field approximation is retained and expanded to include
all harmonics. Again, no emission is observed along the laser
polarization and only odd harmonics are emitted normal to
this, as is expected from one-dimensional, periodic motion.

IV. ELECTRIC-FIELD-NODE EQUILIBRIUM

The magnetic-field nodes represent unstable equilibria be-
ing at local maxima of the ponderomotive potential. The
nodes of the electric field, however, occur at the local
minima and are, therefore, stable. The equations of motion
can then be solved in a neighborhood about these points,
z̄n=� /2+n� for integer n. Linearization of this system is
achieved by asserting that �=1 and expanding all sinusoids
in z to first order about zn. This is equivalent to restricting the
electron to nonrelativistic motion, i.e., a0�1, and approxi-
mating the minimum of the ponderomotive well quadrati-
cally. This linearization yields the Mathieu equation

d2

dt2 �z�t� − z̄n� + 4a0
2 sin2�t��z�t� − z̄n� = 0, �14�

where �z�t�− z̄n��� /2. This localization is not as restrictive
as it appears. PIC simulations show that electrons will, in-
deed, bunch near the bottom of the ponderomotive well,
thereby depleting the electron population away from this lin-
earized solution.

The orbit is found by positing a series solution in z�t� such
that z�t�− z̄n=zl�t�+a0

2g2�t�+a0
4g4�t�+¯, where zl�t� is the

low-frequency, time-averaged axial displacement, and the re-
maining terms are small, high-frequency corrections. The
low-frequency solution is a simple harmonic motion form
with characteristic ponderomotive oscillation frequency 	z0
�a0

�2, and zl�t�=�0 cos�	z0t�, where �0�z�t=0�− z̄n. The
high-frequency corrections are then given by the recursion

g̈2�t� = 2�0 cos�2t�cos�	z0t� �15�

g̈m�t� + 4 sin2�t�gm−2�t� = 0, �16�

where m=4,6 ,8 , . . .. The axial velocity then follows by
simple differentiation, and the transverse velocity and dis-
placement follow by direct substitution into Eq. �1� and in-
tegration in time as shown in Table II.

The electron motion is dominated by two time scales
forming so-called Lissajous patterns. The axial motion is a
simple oscillation at the ponderomotive bounce frequency
	z0. The transverse motion, however, is a more complicated
mixture of the laser and ponderomotive bounce frequencies.

With the orbit known, this can—in principle—be Fourier-
transformed according to Eqs. �3� and �4� to give the associ-
ated Thomson-scattering radiation pattern as a function of
frequency 	 and direction of observation n̂. The electron
orbit is truly periodic and Eq. �5� can be used exactly when
the field strength is chosen such that a0=�2/ �2N�, where N
=2,3 ,4 , . . .. In that case, the base frequency 	1 is then sim-
ply the bounce frequency 	z0. In fact, this formalism can be
used for any small a0, since the deviation from true period-

TABLE I. The first six Fourier coefficients for describing the
electron motion at the magnetic-field node in the low-field limit to
order a0

10. Am= �−1�ma0
2m���2m+1� /2� / �����m+1��.

Expansion coefficients for the low-field radiation pattern

c1= �1+3A1+10A2+35A3+126A4+462A5�
c3=−�A1+5A2+21A3+84A4+330A5�

c5= �A2+7A3+36A4+165A5�
c7=−�A3+9A4+55A5�

c9= �A4+11A5�
c11=−�A5�

TABLE II. Summary of the lowest-order solution to the linear-
ized single-particle model near the electric-field node equilibrium.
This model assumes that terms of the form �i� j for �i , j���x ,y ,z�
are much less than one and that oscillations around the fixed points
located at zn= �2n+1�� /2 for n � Z are small. The terms x0, y0, and
�0 represent the electron initial conditions.

Linearized single-particle model lowest-order solution

�x�t�=2�−1�na0 sin�t�sin��0 cos�	z0t��

x�t�= �−1�n+1�a0�0� 1−	z0
2 ���1+	z0�cos��1−	z0�t�

+ �1−	z0�cos��1+	z0�t�−2	+x0

�y�t�=0

y�t�=y0

�z�t�=−�2�0a0 sin�	z0t�
z�t�=�0 cos�	z0t�+zn
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icity is small. Numerical investigations have shown that the
difference in transverse and axial periods only acts to slightly
broaden the harmonics.

The emitted radiation pattern can be approximated ana-
lytically by expanding the retarded time phase term in Eq.
�4� as

e−in̂·x � 1 − in̂ · x . �17�

Performing the integration of Eq. �3� in this way yields scat-
tered radiation at both the bounce and laser fundamental fre-
quencies as well as their second harmonics

d
̄

d�
�	z� = �2�0

2	z
2�1 − nz

2� , �18�

d
̄

d�
�2	z� = 2�2a0

2�0
4�2	z�2�nz

2�1 − nz
2� − 2nx

2nz
2� 	z

2

1 − 	z
2�

+ nx
2�1 − nx

2�� 	z
2

1 − 	z
2�2� , �19�

d
̄

d�
�	0� =

1

2
�2�0

4�nz
2�1 − nx

2� − 2nx
2ny

2nz
2� 	z

2

1 − 	z
2� + nx

2�1 − nz
2�

�� 	z
2

1 − 	z
2�2� , �20�

d
̄

d�
�2	0� = 4�2�0

4� 	z

1 − 	z
2�2

nx
2�1 − nx

2� . �21�

The second harmonic of the ponderomotive frequency scales
as a0

2�0
4≪1. Thus, this emission line is not observed in nu-

merical simulations of this problem.
The laser and ponderomotive bounce frequencies are

transferred directly to the spectrum through the fast electron
quiver motion and the slower ponderomotive well oscilla-
tion, thereby generating the aforementioned harmonics.
These frequencies also couple through a process we have
termed ponderomotive intermodulation, creating the side-
band products 	=	0±	z0 and 	=	0±2	z0, as well as 	
=2	0±2	z0, as given by

d
̄

d�
�	0 ± 	z� =

1

2
�2�0

2�1 ± 	z�2�1 − nx
2� , �22�

d
̄

d�
�	0 ± 2	z� =

1

8
�2�0

4�1 ± 2	z�4�nz
2�1 − nx

2�

� 2nx
2nz

2� 	z

1 ± 	z
� + nx

2�1 − nz
2�� 	z

1 ± 	z
�2� ,

�23�

d
̄

d�
�2	0 ± 2	z� =

1

2
�2a0

2�0
4�2 ± 2	z�2nx

2�1 − nx
2� . �24�

This intermodulation mechanism is, in fact, analogous to
many classical nonlinear optical phenomena, including Ra-
man scattering. The test electron couples to both the incident

laser field and a second periodic potential. In ponderomotive
intermodulation, this potential is the ponderomotive potential
�p, instead of the plasma-wave electrostatic potential respon-
sible for Raman scattering �37�. Thus, intermodulation will
exist whenever quiver motion driven by a laser interacts with
an additional periodic potential, and ponderomotive inter-
modulation occurs when that potential is due to the interfer-
ence of overlapping laser pulses.

Inclusion of the high-frequency corrections of Eqs. �15�
and �16� acts to add additional harmonics of these two fre-
quencies. For example, the first correction as defined by Eq.
�15� yields emission up to the sixth harmonic of the laser
frequency as well as the first two intermodulation products,
N	0±	z0 and N	0±2	z0. These higher-order modes, how-
ever, scale strongly with the small parameter a0 and are not
observed in numerical studies.

These formulas for the Thomson spectra correctly predict
the scattered frequencies and the qualitative behavior of the
angular distributions of each emitted line. The approximation
of Eq. �17�, however, fails to capture enough detail to accu-
rately determine the absolute magnitude of the scattered sig-
nal. By integrating Eq. �3�, including the full retarded time
phase term exp�−in̂ ·x�, these magnitudes are obtained to
good approximation, as discussed later.

V. VALIDITY OF THE SINGLE-PARTICLE MODEL

The electron dynamic equations and the resulting spectra
have relied on several seemingly stringent assumptions—
zero plasma density and no gradients in the laser envelope.
The question of the range of validity of this model then
naturally arises. In making the near-equilibrium linearization
at the electric-field nodes, the ponderomotive potential was
modeled quadratically in z. Electrons initially residing far-
ther from the node sample a greater portion of the pondero-
motive well and, hence, their bounce frequencies acquire an
initial phase, �0, dependence. This can be calculated in the
nonrelativistic limit by averaging Eq. �2� over a laser cycle
and solving the resulting pendulum equation to yield

�z = 2�/	z = �z0F„cos��0�,�/2… , �25�

where �z is the bounce period, 	z is the bounce angular fre-
quency, �z0=2�	z0

−1 is the linearized bounce period, �0 re-
tains the meaning cited earlier, and F�k ,� /2� is the elliptic
integral of the first kind �38�.

PIC simulations using the program OOPICPRO show that
for initially cold plasmas with electron densities as high as
1019 cm−3, electrons will tend to bunch to densities up to an
order of magnitude greater than the background plasma den-
sity in a range of one-eighth the laser wavelength about the
electric-field nodes �39,40�. In the notation of the solutions
given earlier, this means that the majority of electrons have
initial phases such that ��0� ranges from 0 to � /8. Approxi-
mating Eq. �25� using this restriction yields

�z = �z0�1 + 

n=1

� �1 � 3 � ¯ �2n − 1�
2 � 4 � ¯ �2n� �2

cos2n��0�� .

�26�

This then gives a maximum increase of ponderomotive fre-
quency of 18.03% due to initial phase variation. This also
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provides an estimate for the upper bound of plasma densities
for which this single-particle theory is valid. Single-particle
effects remain independent of collective plasma behavior
provided they operate on faster time scales than the response
time of the bulk plasma. Since the plasma time scale is given
by �p=2�	p

−1 and ponderomotive intermodulation operates
over a time �z��0, this single-particle approach applies
when �z��p. Taking the maximum value of �z=1.1803�z0

n0�cm−3� � �1.6 � 1021�� a0

���m��
2

, �27�

where � is the laser wavelength given in �m. For example,
for a Nd:glass laser operating at �=1.053 �m and a strength
of a0=0.2, the density must be less than about 5
�1018 cm−3.

The plane-wave model of the laser also gives rise to
physical limits of applicability. For the temporal profile of
the laser pulse to not significantly affect this phenomenon,
the radiating electron must be able to traverse several bounce
periods without the field strength changing significantly.
Thus, the pulse duration �l must satisfy the relation �l��z.
This leads to the more specific requirement

�l�fs� � �5�1.1803��2

3
�����m�

a0
� . �28�

Again, for a 1.053-�m laser operating at a0=0.2, the pulse
duration must be greater than approximately 100 fs. Simi-
larly, during a bounce period, an electron can travel no more
than a distance c�z. For the laser field to be nearly constant to
an electron traveling this distance transverse to the laser, the
waist w0 must satisfy

w0

�
�

1.1803

a0
�2

, �29�

which implies a �10-�m waist for the sample laser param-
eters already considered.

VI. PARTICLE-IN-CELL SIMULATIONS

Since only the electron dynamics need be known, this
problem lends itself well to particle-in-cell modeling. Simu-
lations have been run using OOPICPRO to span the parameter
space as defined in Eqs. �27�–�29�, looking specifically for
the effects of the bulk plasma, a finite initial temperature,
finite duration, and focused laser pulses �39,40�. All of the
runs consist of a rectangular simulation box 64 �m in the

laser propagation direction and 16 �m transverse to this, as
shown in Fig. 1. A single 300-fs laser pulse of wavelength
1 �m and focused to w0=14 �m is launched from the z=0
wall �left boundary� and propagates to the far wall, which is
a perfect conductor. Here the pulse is reflected, setting up a
counterpropagating geometry. Cold electrons are loaded
throughout the entire simulation space, and an immobile neu-
tralizing ion background is included. A set of 116 test elec-
trons are randomly selected in a 10-�m-by-1-�m area within
the foci of the pulses.

The initial laser pulse is allowed to propagate across the
64 �m �2131

3 fs� and reflect back an additional 30 �m
�100 fs�. OOPICPRO was modified so that the positions and
velocities of a random set of test electrons are tabulated in a
single output file 24 times per laser cycle for 100 fs while the
pulses are overlapped. These data are then numerically inte-
grated according to Eq. �3� to yield the light scattered by
each electron. Each signal is then incoherently summed with
the other particles, producing an integrated signal. Two such
spectra are shown in Fig. 2. Both of these calculations show
the light scattered in the +ẑ direction. Notice that the spacing
between the laser fundamental and the intermodulation prod-
ucts increases linearly with a0, as predicted.

Figure 3 shows the light scattered from 116 test particles
in the x-z plane for a0=0.2. The left-hand figure shows the
light radiated 45° above the z axis, and the right-hand plot is
the light scattered along the laser polarization. Notice the
strong low-frequency signal along the polarization vector.
For the case of a 1-�m laser, this corresponds to 3.54-�m
light with an intensity comparable to that of the fundamental
scattered in the laser propagation direction. The top scatter
image also shows weak emission at roughly the frequencies
2	0±	z, which is predicted only when the first high-
frequency correction is included in the particle orbits �see
Eq. �15��. The small laser fundamental signal along the po-
larization is due to the spread in laser-wave vectors �k�,
which is due to the laser focusing.

The analytic approximations for the Thomson-scattered
light derived in Eqs. �18�–�24� correctly predict the fre-
quency and overall angular distribution illustrated in Figs. 2
and 3—that is, a strong laser fundamental as well as the

FIG. 1. Schematic diagram of the OOPICPRO simulation box. The
simulation was performed in two-dimensional rectangular
coordinates.

FIG. 2. �Color online� Forward �z� light as a function of the
laser strength, a0. The dashed line corresponds to a0=0.05, and the
solid line to a0=0.10. The laser is 300 fs in duration and focused to
a waist of 14 �m. The background plasma density is 1018 cm−3. A
total of 116 test-particle spectra have been summed.
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intermodulation products 	0±	z and 	0±2	z along the k
vector, and a dominant 	z signal along the laser polarization
direction. The relative magnitudes of these lines predicted by
this model, however, are poorly matched to the full simula-
tion results. Figure 4 compares the forward-scattered light
for 57 particles under the same laser conditions as Fig. 2 and
a0=0.05 using the PIC data �solid line� and the single-
electron orbits, now including the entire retarded-time phase
term exp�−in̂ ·x�, using 57 evenly spaced initial phases �0

between � /4 and 3� /4 �dashed line�. The agreement is quite
good except that the PIC simulation produces a much larger
laser fundamental signal. This can be attributed to the con-
tribution from electrons in regions of marginal pulse overlap.
These particles see only a single laser and, therefore, radiate
only at this frequency �28�.

Since the laser pulse propagates through the plasma be-
fore reflecting and creating the standing laser wave, a plasma
wave is created, and the test electrons now no longer have a
zero initial velocity when entering the standing wave. Exam-
ining the spectra radiated by PIC electrons and electrons
whose equation of motion has been solved numerically given

a small initial velocity shows that the intermodulation lines
tend to be slightly offset from their theoretically predicted
value due to this initial motion. Taking the ensemble as
shown in these PIC results, the emitted lines tend to be
slightly broadened due to the finite plasma temperature.

VII. EXPERIMENTAL SIGNATURES
AND CONSEQUENCES

By employing single-particle as well as particle-in-cell
numerical techniques, the process of ponderomotive inter-
modulation and its potential as a light source have been in-
vestigated theoretically. Ponderomotive intermodulation has
several signature characteristics amenable to laboratory mea-
surement. The intermodulation frequencies that straddle the
laser harmonics are intensity-dependent. That is, since the
laser intensity I scales like I�a0

2, the bounce frequency then
goes as 	z� I1/2, and the frequency separation between har-
monics and intermodulations then also scales as I1/2. Thus,
by simply varying the laser intensity, the intermodulation
products produced by this process will shift in frequency.
Conversely, this process could be used to deduce the laser
intensity by measuring the absolute offset of the intermodu-
lation products. This would be important, for example, in a
dynamic Hohlraum.

In addition to intermodulation products, the preceding
analysis and simulations show that the one-dimensional op-
tical lattice created by overlapping two counterpropagating
laser beams generates a significant long-wavelength signal
along the laser polarization, as illustrated by Eq. �18�. This
light, for example, occurs at 3.76 �m for a Nd:Glass laser
operating at 1.053 �m and a0=0.2. As this top-scattered fre-
quency scales with a0 ��I1/2�, the absolute frequency is tun-
able by simply adjusting the laser intensity. Emission at this
frequency will only occur as long as the lattice exists, that is,
as long as the laser pulses are overlapped. The duration of
this light source, then, is determined by the laser pulse
duration—which, using chirped pulse amplification, can now
easily be on the order of hundreds of femtoseconds. Thus,
the optical lattice created by two overlapped counterpropa-

FIG. 3. Thomson scattered light in the x-z plane. The same plasma and laser conditions as in Fig. 2 have been used with a0=0.2, and 116
test particles have been summed. The left-hand figure shows the spectrum along n= ��2/2��x+z�. The peaks correspond to the frequencies
	z, 	0−	z, 	0, 	0+	z, 	0+2	z �weak�, and 2	0. The right-hand plot is taken along the laser polarization �n=x�. The frequencies are 	z,
	0, 2	0−	z, and 2	0+	z.

FIG. 4. A comparison of the spectra from 57 particles using the
PIC simulation �solid line� and the single-particle equation of mo-
tion �dashed line�. The relative agreement for each of the inter-
modulation products is good. The laser fundamental line is en-
hanced in the PIC simulation due to particles in regions of poor
overlap.
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gating laser pulses acts as an ultrafast, all-laser-driven, near-
infrared source. Using the PIC results shown in Fig. 3, the
instantaneous scattered power radiated into a cone with slant
angle �m by a laser with a duration of � fs, an energy of E
Joules incident on a plasma with an electron number density
of ne in cm−3 is given by

P�W� = �10−20����fs���E�J���ne�cm−3���8�m

3
�

�sin �m�3 − sin2 �m���
	z−�	

	z+�	 d2
̄

d�d	
�

PIC

d	 ,

where �	�0.15 is half of the bandwidth of the 	z line
normalized to the laser frequency, and the spectral energy
density inside the integral is that shown in Fig. 3. Using two
1-ps laser pulses containing 20 J of energy each, incident on
a cold plasma with ne=3�1018 cm−3 and assuming a detec-
tor acceptance angle of 5° yields a power of �616 W at
3.76 �m. This power is low, but the tunability as well as the
ultrashort duration and directionality of such an optical-
lattice source is encouraging. By utilizing other angles of
incidence, higher intensities and, therefore, higher scattered
powers may be reached.

The range of initial phases as well as the finite initial
temperature of any real set of electrons tend to broaden all of
the Thomson-scattered lines, as illustrated in the PIC simu-
lation results shown in Figs. 2 and 3. When all of these
factors are properly tuned, the first intermodulation products
	0±	z can overlap the laser fundamental mode, 	0, anoma-
lously broadening the 	0 signal, as illustrated in Fig. 5. This
can lead to incorrect pulse-duration calculations. For ex-
ample, an experiment utilizing counterpropagating, 750-nm
laser pulses with a0�0.002 generates a bounce wavelength
span from 2.15 to 2.50 nm, with the range being due to the
spread in initial phases �0. Including both the �0 spread and
a 4-nm full width at half maximum �FWHM� bandwidth of
the laser—which is also imparted to the sidebands—the laser
and first intermodulation product signals overlap, which pre-

cludes pulse lengthening from being observed using band-
width techniques. Such broadened pulses may also lend
themselves to chirped pulse amplification as well and need to
be taken into consideration in the interpretation of data as-
cribed to other broadening mechanisms, such as relativistic
self-modulation.

Additionally, such spectrally broadened pulses hold the
potential to be temporally compressed. This process is analo-
gous to many parametric amplification processes, but now
the laser fields themselves are being used as the nonlinear
medium. For such a process to work, however, the phase
characteristics of the Thomson-scattered light also must be
considered.

Ponderomotive intermodulation also generates a strong
	0+	z signal in the near-forward/near-backward direction,
which can mimic a broad �3/2 harmonic of a 1-�m laser.
The broadness of such emission is, of course, caused both by
the temporal and spatial variation of a Gaussian laser pulse
and by the finite range of �0 values in a plasma. This �3/2
harmonic light can be further enhanced by the weaker 2	0

−2	z scattering when a0�0.2. Similar features have been
observed experimentally �41�.

VIII. SUMMARY AND CONCLUSIONS

We have here derived the equilibrium electron orbits in a
one-dimensional optical-lattice setup by counterpropagating
laser pulses of equal amplitude and frequency. This motion,
in general, includes both fast laser quiver motion and slower
ponderomotive oscillations. These time scales mix to yield
harmonics of both the laser and ponderomotive frequencies
as well as several intermodulation products. Emission of the
ponderomotive bounce frequency has been shown to have
significant potential as an ultrafast near-infrared source.

For completeness, the spectra emitted at the magnetic-
field nodes have also been computed. The slow, axial bounce
motion is seen to disappear, and the orbit and, hence, the
radiation pattern then no longer show mixing but only emis-
sion of laser harmonics. As this is an unstable equilibrium
point, however, the ponderomotive bounce motion will
dominate the radiated light.

Ponderomotive intermodulation occurs independent of the
plasma response and is, therefore, significant in realistic
laboratory conditions, as demonstrated in Eqs. �27�–�29�.
The resulting scattered light produces—in addition to the
low-frequency emission peaked along the laser
polarization—intensity-dependent spectral satellites about
the laser harmonics in much the same way Raman scattering
does through the plasma wave. This not only gives a signa-
ture dependence for diagnosis of this effect and the laser
intensity in the plasma but can also lead to anomalous spec-
tral broadening of laser harmonics.

In many plasma problems, multiple time scales act to
drive electron motion. Associated with each mode is a natu-
ral frequency, which interacts with the others to produce the
resulting orbit. This mixing can be seen directly through the
Thomson-scattered light since the Larmor formula as shown

FIG. 5. The sum of three offset Gaussian signals yields a
broader bell-shaped signal, which—if ponderomotive intermodula-
tion is not accounted for—can lead to incorrect pulse-duration esti-
mates. The three Gaussians �dashed curves� all have FWHM of
4.00 nm. The sum of these three �solid curve�, however, has a
FWHM of 5.37 nm.
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in Eqs. �3� and �4� is nothing more than a Fourier decompo-
sition of the electron velocity. We have here demonstrated a
particular case of such intermodulation driven by the pon-
deromotive potential of beating laser beams. The idea can
now be extended to specific geometries and even other driv-
ing mechanisms to extend this method to additional scattered
wavelengths.
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